Группа компаний «ЛЮМЭКС» Аналитическое оборудование и приборы ЛЮМЭКС
пр. Обуховской Обороны, дом 70, корп. 2 192029 Санкт-Петербург, Россия
+7 (812) 718-53-90, +7 (812) 718-68-65, lumex@lumex.ru
Тел.: +7 (812) 718-53-90
Группа компаний «ЛЮМЭКС»
Главная О компании Новости Вакансии Отделения «Люмэкс» Контакты
Каталог приборов Методики Поддержка пользователей

Капиллярный электрофорез — относительно новый инструментальный метод анализа. В статье кратко изложена суть электрофоретического разделения, представлена аппаратура для реализации метода, а также предложены области применения.

В основе капиллярного электрофореза лежат электрокинетические явления — электромиграция ионов и других заряженных частиц и электроосмос. Эти явления возникают в растворах при помещении их в электрическое поле, преимущественно, высокого напряжения. Если раствор находится в тонком капилляре, например, в кварцевом, то электрическое поле, наложенное вдоль капилляра, вызывает в нем движение заряженных частиц и пассивный поток жидкости, в результате чего проба разделяется на индивидуальные компоненты, так как параметры электромиграции специфичны для каждого сорта заряженных частиц. В то же время, такие возмущающие факторы, как диффузионные, сорбционные, конвекционные, гравитационные и т. п., в капилляре существенно ослаблены, благодаря чему достигаются рекордные эффективности разделений.

Введение

 

В последние два десятилетия в мире отмечен активный интерес к новому, интенсивно развивающемуся методу разделения сложных смесей — капиллярному электрофорезу, позволяющему анализировать ионные и нейтральные компоненты различной природы с высокой экспрессностью и уникальной эффективностью.

Традиционно капиллярный электрофорез сравнивают с высокоэффективной жидкостной хроматографией (ВЭЖХ), поскольку в обоих методах разделение происходит в ограниченном пространстве (капилляре или колонке) с участием движущейся жидкой фазы (буферного раствора или подвижной фазы (элюента)) и для регистрации сигналов используют схожие принципы детектирования и программы обработки данных. Тем не менее у методов есть отличия, которые, безусловно, относятся к достоинствам капиллярного электрофореза:

  • высокая эффективность разделения (сотни тысяч теоретических тарелок), недоступная ВЭЖХ и связанная с плоским профилем ЭОП,
  • малый объем анализируемой пробы и буферов (не более 1–2 мл в день), при этом практически не требуется применение высокочистых, дорогостоящих органических растворителей,
  • отсутствие колонки, сорбента, проблем с его старением и, значит, заменой колонки,
  • простая и недорогая аппаратура,
  • экспрессность и низкая себестоимость единичного анализа.

Из ограничений КЭ следует отметить невысокую, по сравнению с ВЭЖХ, концентрационную чувствительность и требование к анализируемым соединениям растворяться в воде и разбавленных водно-органических смесях. В то же время эти ограничения не являются непреодолимыми. Так, недостаточную чувствительность определения при использовании УФ-детектирования (из-за малой длины оптического пути, равного внутреннему диаметру капилляра) может скомпенсировать использование таких видов детектирования, как лазерно-индуцированное флуориметрическое или масс-спектрометрическое в сочетании с различными приемами on-line концентрирования пробы (т. н. стэкинг и свиппинг). А вариант неводного капиллярного электрофореза успешно позволяет разделять и анализировать сильно гидрофобные, нерастворимые в водных растворах компоненты пробы.

Метод капиллярного электрофореза сегодня с успехом применяется для анализа разнообразных веществ (неорганических и органических катионов и анионов, аминокислот, витаминов, наркотиков, красителей, белков и т. д.) и объектов (для контроля качества вод и напитков, технологического контроля производства, входного контроля сырья, анализа фармпрепаратов и пищевых продуктов, в криминалистике, медицине, биохимии и т. д.).

В России работы, связанные с изучением возможностей метода КЭ и его аналитических приложений, стали появляться лишь в последние годы, что в существенной степени инициировалось созданием отечественных приборов для капиллярного электрофореза.

Системы капиллярного электрофореза «Капель», разработанные и выпускаемые фирмой «Люмэкс», являются первым в России и СНГ серийным семейством приборов, внесенных в Госреестр средств измерений и предназначенных для реализации этого метода. В состав семейства на сегодняшний день входят следующие модификации, аттестованные как средства измерения: «Капель-103Р», «Капель-103РТ», «Капель-104Т»,«Капель-104М», «Капель-105» и «Капель-105М». Фирма выпускает так же опытные модификации — электроинжекционные анализаторы «Капель-РЕ». Разрабатываются модели с встроенным блоком измерения потенциала течения «Капель-ПТ».

Системы капиллярного электрофореза «Капель» предназначены для количественного и качественного определения состава проб веществ в водных и водно-органических растворах методом капиллярного электрофореза. На приборах любой из модификаций без ограничений могут быть реализованы методики, использующие основные варианты КЭ — капиллярный зонный электрофорез (КЗЭ) или мицеллярную электрокинетическую хроматографию (МЭК Х). Первый вариант предназначен для анализа только ионных компонентов проб, второй — для анализа как ионных соединений, так и молекулярных форм веществ.

[содержание]

Физико-химические основы метода капиллярного электрофореза

 

Движение заряженных коллоидных частиц под действием внешнего электрического поля носит название электрофореза. Электрофорез как метод разделения предложен в 30-х годах XX в. Тизелиусом. Он поместил смесь белков сыворотки крови в буферный раствор и при наложении электрического поля обнаружил, что компоненты пробы мигрируют в направлении и со скоростью, определяемыми их размером, формой и электрическим зарядом. В 1948 г. работа была удостоена Нобелевской премии по химии. Главным ограничением широкого использования метода была низкая эффективность разделения из-за тепловых эффектов и конвекции жидкости. Эта проблема была частично решена благодаря использованию неконвективной среды (полиакриламидные гели) в гель-электрофорезе. Несмотря на то, что разделение в геле довольно широко распространено, особенно в биохимии, очевидны и его ограничения: длительное время анализа, недостаточная эффективность, трудности при детектировании и автоматизации.

В 1967 г. шведский ученый Хиртен предложил проводить электрофоретическое разделение не на плоскости, а в открытых трубках — капиллярах с внутренним диаметром 1–5 мм, тем самым положив начало методу капиллярного электрофореза. Позже Виртанен и Миккерс использовали стеклянные и тефлоновые капилляры с внутренним диаметром 200 мкм, и, наконец, в начале 80-х гг. XX в. Йоргенсон и Лукас продемонстрировали сепарационные возможности кварцевого капилляра с внутренним диаметром 75 мкм, использовав последние достижения в изготовлении кварцевых капилляров очень малых и равномерных внутренних диаметров (~ десятки мкм), прозрачных в ультрафиолетовой области спектра. Кроме того, в мире был у же накоплен значительный опыт по возможностям детектирования аналитических сигналов в потоке. С этого момента начинается активное развитие метода капиллярного электрофореза в его современном формате, продолжающееся по настоящее время.

Метод КЭ основан на разделении заряженных компонентов сложной смеси в кварцевом капилляре под действием приложенного электрического поля. Микрообъем анализируемого раствора (~2 нл) вводят в кварцевый капилляр, предварительно заполненный подходящим буфером — электролитом. После подачи высокого напряжения (до 30 кВ) к концам капилляра компоненты смеси начинают двигаться с разной скоростью, зависящей, в первую очередь, от заряда и массы (точнее, величины ионного радиуса) и, соответственно, в разное время достигают зоны детектирования. Полученная последовательность пиков называется электрофореграммой; качественной характеристикой вещества является время миграции, а количественной — высота или площадь пика, пропорциональная концентрации вещества.

Для того чтобы получить более подробное представление о методе, необходимо рассмотреть ряд процессов, происходящих в капилляре, заполненном электролитом и помещенном в продольное электрическое поле.

Находящиеся на поверхности плавленого кварца силоксановые группы при контакте с водой или водными растворами гидролизуются с образованием удвоенного количества силанольных групп, которые затем гидратируются.

Скорость и степень гидролиза зависят от температуры и рН водных растворов и, в меньшей степени, от концентрации солевого фона раствора. В водном растворе силанольные группы способны к кислотной диссоциации. Константа первой ступени имеет величину К = 2,5x10e-3;. Это означает, что при рН водного раствора больше 2,5 поверхность кварца приобретает некоторый отрицательный заряд, который возрастает при увеличении рН раствора. Наоборот, при рН ~2 и меньше диссоциация силанольных групп практически полностью подавлена, и поверхность кварца становится нейтральной.

Диссоциация силанольных групп вызывает на границе раздела кварц-водный раствор электролита образование двойного электрического слоя (ДЭС), рис. 1а. Первую его обкладку составляют неподвижные отрицательно заряженные силанольные группы. Вторую обкладку двойного слоя составляют положительно заряженные катионы, существующие в растворе. Диэлектриком, разделяющим обкладки этого конденсатора, являются молекулы воды, гидратирующие как силанольные группы, так и катионы.

Положительная часть ДЭС, в свою очередь, делится на две части: первую (или неподвижную), непосредственно примыкающую к поверхности кварца, и вторую (или диффузную), располагающуюся на некотором удалении от поверхности. В неподвижной части количество положительных зарядов меньше, чем отрицательных зарядов на поверхности кварца из-за увеличения размеров катионов вследствие гидратации. В результате в диффузной части ДЭС образуется некоторая избыточная концентрация катионов. Между этими двумя слоями проходит т. н. граница скольжения — при наложении вдоль капилляра электрического поля неподвижная часть остается на месте, в то время как диффузная часть начинает мигрировать к катоду, увлекая за собой в силу межмолекулярного сцепления всю массу жидкости в капилляре. Возникает электроосмотический поток (ЭОП), который осуществляет пассивный перенос раствора внутри капилляра. Скорость ЭОП в сильной степени зависит от рН раствора: в сильнокислых растворах ЭОП отсутствует, в слабокислых — его скорость незначительна, а при переходе в нейтральную и щелочную область рН скорость ЭОП возрастает до максимально возможной. С другой стороны, эта величина зависит от концентрации электролита в ведущем буфере: чем она больше, тем выше становится доля катионов в неподвижной части ДЭС, а толщина диффузной части уменьшается и, соответственно, уменьшается скорость электроосмотического потока.

На рис. 1б показано распределение зарядов в ДЭС. Общий потенциал (Ψ), создаваемый диссоциированными силанольными группами, пропорционален заряду. Часть этого потенциала (ΔΨ) нейтрализуется положительными зарядами ионов неподвижной части второй обкладки двойного слоя. Остальная часть положительных зарядов создает в приповерхностном слое раствора электрокинетический или потенциал (дзета-потенциал).


Рис. 1а. Строение двойного электрического слоя.


Рис. 1б. Распределение зарядов в ДЭС.

Уникальное свойство ЭОП заключается в плоском профиле потока (в отличие от параболического в ВЭЖХ), который при движении зон компонентов внутри капилляра практически не вызывает их уширения (рис. 2). Благодаря этому метод КЭ характеризуется высочайшей эффективностью (~ сотни тысяч теоретических тарелок).


Рис. 2. Влияние профиля потока на ширину зоны вещества.

В приборах для капиллярного электрофореза капилляр, заполненный раствором электролита, своими концами опущен в два содержащих тот же электролит сосуда, в которые введены электроды. Электролит должен обладать буферными свойствами, чтобы, с одной стороны, воспрепятствовать изменению состава раствора в приэлектродных пространствах, а с другой — стабилизировать состояние компонентов пробы в процессе анализа. При подаче на электроды высокого напряжения в капилляре быстро устанавливается стационарное состояние: через капилляр протекает постоянный электроосмотический поток, на который накладывается взаимно противоположная электромиграция катионов и анионов. Если в капилляр со стороны анода ввести небольшой объем раствора пробы, то ЭОП будет переносить эту зону к катоду (в область детектирования), и зона некоторое время сможет находиться в капилляре под воздействием электрического поля высокого напряжения. В течение этого времени заряженные компоненты пробы будут перемещаться в соответствии с их электрофоретическими подвижностями. Катионные компоненты пробы, двигаясь к катоду, будут обгонять электроосмотический поток (рис. 3). Скорость их движения складывается из скорости ЭОП и скорости электромиграции, поэтому на выходе капилляра катионы появляются первыми и тем раньше, чем больше их электрофоретическая подвижность. Нейтральные компоненты пробы способны перемещаться только под действием электроосмотического потока, тогда как анионные будут перемещаться к аноду со скоростями меньшими, чем скорость ЭОП. Медленно мигрирующие анионы появятся на выходе после ЭОП, а те, чья скорость электромиграции по абсолютной величине превышает скорость ЭОП, будут выходить из капилляра в прианодное пространство.


Рис. 3. Электрофоретическая миграция ионов в присутствии электроосмотического потока.

Если время нахождения пробы в капилляре (которое можно регулировать изменением напряжения, величины рН и концентрации ведущего электролита) достаточно, чтобы проявились различия в подвижности ионов, то на выходе капилляра вблизи катода можно наблюдать зоны раствора, в которых находятся индивидуальные компоненты пробы.

Ведущий электролит (его называют так же рабочим буферным раствором) должен иметь такую концентрацию, при которой электрическое сопротивление раствора в капилляре будет достаточно велико. Это требование связано с тем, что при прохождении электрического тока в проводнике выделяется тепло. Если ток достаточно велик, то жидкость в капилляре может даже закипеть. Традиционно считается, что электрический ток в капилляре подчиняется закону Ома, хотя известно, что линейная связь тока и напряжения существует в растворе только в ограниченном диапазоне напряжений. Рассмотрим некоторые аспекты этого явления на конкретном примере.

Пусть полная длина капилляра равна 60 см, эффективная длина (т. е. длина от входа до окна детектора) — 50 см, рабочее напряжение, поданное на электроды, равно 25 кВ, сила тока в капилляре составляет 100 мк А. Сила тока в капилляре зависит от его длины и диаметра, а так же от концентрации электролита в растворе. Для капилляра с внутренним диаметром 75 мкм сила тока 100 мкА при напряжении 25 кВ достигается при концентрации соли в электролите 0,03–0,04 моль/л. В выбранных условиях электрическое сопротивление цепи составляет 250 М (мегаОм), градиент напряжения, который практически совпадает с градиентом поля, составляет 416 В/см. Мощность, выделяющаяся в капилляре, в этом случае равна 2,5 Вт. Так как вся она превращается в тепловую энергию, её удобнее пересчитать в тепловые единицы калории. Пересчет показывает, что в капилляре ежесекундно выделяется 0,6 калории — гигантское количество, если учесть, что объём жидкости в капилляре диаметром 75 мкм составляет всего 2,65 мкл. Если не принимать в расчет перенос тепла через стенку капилляра, то такого количества достаточно, чтобы в течение 1 секунды температура жидкости в капилляре возросла на 225 °С (!).

Этот формальный расчет показывает, насколько серьёзна проблема охлаждения капилляра в КЭ. В действительности выделяющаяся теплота расходуется не только на нагревание раствора, но также на нагрев кварцевых стенок и полиимидной оболочки. Нужно так же учесть, что теплоёмкость кварца в ~6 раз меньше, чем водного раствора, а теплопроводность плавленого кварца в 16 раз больше, чем у воды. Все эти обстоятельства способствуют эффективному отводу тепла во внешнюю среду, однако, если не принять специальных мер, жидкость в капилляре очень скоро закипит. Поэтому в приборах для КЭ всегда присутствуют либо системы охлаждения капилляра энергичным воздушным обдувом, либо системы жидкостного охлаждения.

Тепловое равновесие в капилляре устанавливается достаточно быстро. Оно характеризуется сравнительно малым различием температуры раствора в радиальном направлении во внутреннем канале капилляра и устойчивым градиентом температур между внутренней и внешней стенками капилляра. Нагрев жидкости не вызывает появления конвективных потоков, так как нагревание происходит равномерно по всему просвету капилляра. В результате не происходит перемешивание жидкости, приводящее к размыванию зон определяемых компонентов. При чрезмерном нагреве возможно закипание жидкости, и пузыри пара прерывают ток в капилляре, что делает анализ невозможным. Поэтому при выборе условий электрофоретического разделения следует стремиться к минимизации тока соответствующим выбором концентрации ведущего электролита.

В зависимости от концентрации электролитов в растворах буфера и пробы поведение компонентов при разделении может несколько различаться. Если электропроводности ведущего электролита и пробы одинаковы, то падение напряжения на всей длине капилляра равномерно, и компоненты пробы равномерно перемещаются каждый с присущей ему скоростью. В этом случае на выходе капилляра (точнее, в зоне окна детектора) ширина пика будет приблизительно равна ширине зоны пробы (если пренебречь размыванием). Следовательно, эффективное разделение может быть достигнуто при введении возможно меньшего объема пробы (но для обеспечения необходимой чувствительности концентрация определяемых компонентов в пробе должна быть возможно выше).

Иное поведение наблюдается в случае, если электропроводность раствора пробы меньше электропроводности ведущего электролита. В этом случае в капилляре появляется участок с высоким сопротивлением и сила тока через капилляр уменьшается, но в соответствии с законом Ома падение напряжения на участке, занятом пробой, возрастает во столько раз, во сколько раз сопротивление пробы больше, чем сопротивление равного участка ведущего электролита. Таким образом, если сопротивление раствора пробы в капилляре будет в 10 раз больше, чем сопротивление ведущего электролита, градиент потенциала в зоне пробы будет в 10 раз выше, чем в остальной части капилляра. Высокий градиент потенциала в зоне пробы заставляет компоненты пробы быстрее мигрировать к границе зоны, где они в сконцентрированном и предварительно разделенном виде переходят в ведущий электролит, и там продолжают, но у же медленнее, движение к детектору. Описанное явление носит название стекинга и широко используется в практике электрофоретичесих разделений. Оно позволяет получать очень узкие пики определяемых компонентов и, как следствие, концентрация их в пике оказывается значительно выше, чем в исходной пробе. Практически стекинг осуществляют таким образом, что перед вводом пробу разбавляют специальным буферным раствором (концентрация которого в 10 раз меньше, чем концентрация рабочего буферного раствора) или даже дистиллированной водой.

В том же случае, когда электропроводность раствора пробы больше, чем электропроводность ведущего электролита, падение напряжения на участке, занятом пробой, резко уменьшается. В результате скорость электромиграции компонентов пробы уменьшается, они медленнее достигают границы зоны, а при переходе в ведущий электролит скорость их движения увеличивается. Происходит размазывание пиков, они накладываются друг на друга, эффективность разделения резко ухудшается.

В методе капиллярного электрофореза применяются открытые системы в том смысле, что раствор электролита, в котором происходит разделение, не отделено от электродов, на которые подается напряжение, хотя приэлектродные пространства соединяются через тонкий кварцевый капилляр, выполняющий основную разделяющую функцию, но так же служащий электролитическим мостиком, замыкающим электрическую цепь. В электрических цепях, содержащих одновременно проводники первого и второго рода, протекание тока невозможно без электрохимических реакций на границах металл–раствор. В капиллярном электрофорезе стараются использовать такие составы буферных ведущих электролитов, в которых на электродах происходит разложение воды (одним из самых распространенных буферов для КЭ является раствор буры). На катоде происходит восстановление ионов водорода, выделение на поверхности катода молекулярного водорода и образование в прикатодном пространстве гидроксильных ионов. На аноде — окисление гидроксильных ионов, выделение на поверхности анода молекулярного кислорода и образование в прианодном пространстве ионов водорода.

При высоких разностях потенциалов, которые применяются в КЭ, на электродах могут протекать и другие параллельные электрохимические реакции, но приведённые выше являются основными.

Образующиеся и гидроксильные и водородные ионы нейтрализуются буферными компонентами ведущего электролита: при использовании боратного буфера в прикатодном слое борной кислотой, в прианодном — боратионом. Таким образом, в приэлектродных пространствах происходит лишь изменение мольного соотношения компонентов буферной смеси, приводящее лишь к незначительному изменению рН раствора.

На рис. 4 показано типичное расположение капилляра и электрода в пробирке с раствором электролита, принятое в системах «Капель».


Рис. 4. Типичное расположение капилляра и электрода в пробирке с раствором.

Устье капилляра располагается в нижней трети объёма пробирки; нижний срез электрода находится приблизительно на нижнем уровне верхней трети раствора. При таком расположении продукты электрохимических реакций, в частности, пузырьки газов, не могут проникнуть в просвет капилляра, так же как и раствор ведущего электролита, содержащий продукты нейтрализации и отличающийся по составу от первоначального. В то же время расход ведущего электролита вследствие ЭОП происходит за счет неизменённого раствора из средней трети объёма. Сохранению описанного состояния способствует отсутствие перемешивания раствора в процессе анализа.

Предположим, что анализ проходит при токе 100 мк А в течение 15 минут. За это время через раствор пройдет 1x10-4А x900 сек = 0,09 кулона электричества, что эквивалентно 9,33x10e-7 моля. Такое же количество молей ионов водорода и гидроксила образуется в пробирках, в которых находится по 500 мк л буферного раствора. Следовательно, в течение одного анализа концентрация одного из компонентов буферного раствора изменится на 9,33x10e-7/5x10e-4 = 1,86x10e-3 моль/л. Если исходная общая концентрация компонентов буферного раствора составляет ~0,02 М, то за 5–6 анализов буферная емкость ведущего электролита будет исчерпана полностью.

Приведенный пример показывает, что при анализе существенно меняются концентрации компонентов ведущего электролита. Следовательно, для получения воспроизводимых результатов необходимо регулярно, в среднем через каждые 3–4 анализа, заменять свежими порциями растворы ведущего электролита в рабочих пробирках. Это тем более важно, что в прикатодном пространстве накапливаются катионные компоненты проб, которые могут восстанавливаться на катоде до элементного состояния при последующих анализах. Равным образом в прианодном пространстве могут накапливаться анионные компоненты проб. Одним из самых неприятных из них является анион Сl–, который, окисляясь на электроде до свободного хлора, вызывает коррозию платинового анода.

Применительно к капиллярному электрофорезу физическая картина происходящих процессов выглядит следующим образом. Наложение потенциала на электроды системы вызывает образование в непосредственной близости от поверхности электродов двойного электрического слоя. Градиенты потенциала на границах приэлектродных двойных слоев превышают потенциал разложения воды, и на электродах начинаются электрохимические реакции. На катоде происходит восстановление ионов водорода, а на аноде — окисление ионов гидроксила. Восстановление одного иона водорода на катоде сопровождается образованием в прикатодном слое одного иона гидроксила, а окисление одного иона гидроксила на аноде сопровождается образованием в прианодном слое одного иона водорода. Эти два элементарных акта электрохимических реакций на электродах эквивалентны переходу через раствор одного электрона. Образовавшиеся в результате электродных реакций ионы являются избыточными — они нарушают материальный и электрический баланс в приэлектродных слоях. Эти ионы отторгаются противоположно заряженной поверхностью электродов, и быстро, практически не покидая приэлектродные слои, нейтрализуются буферными компонентами ведущего электролита — в прикатодной зоне кислотным компонентом, а в прианодной зоне основным компонентом. При том расположении капилляра и электродов, которое описано выше, изменение кислотно-основного баланса будет происходить только в верхних слоях резервуаров. Нарушение стехиометрии растворов, т. е. образование в приэлектродных слоях избыточных концентраций катионов (в прианодном) и анионов (в прикатодном), а так же нарушение электрического баланса в приэлектродных слоях вызывают электромиграцию избыточных ионов ведущего электролита во взаимно противоположных направлениях. Внутри капилляра к этим потокам избыточных ионов присоединяется миграция избыточной концентрации катионов диффузной части двойного слоя капилляра.

Механизм перемещения носит, по-видимому, эстафетный характер. Каждый элементарный акт электродных реакций заставляет всю массу ионов в растворе переместится на величину межионного расстояния в растворе. Скорость перемещения такова, что во всём объёме капилляра в любой его точке и в любой момент времени соблюдается электронейтральность раствора. Таким образом, роль этих потоков состоит в выравнивании стехиометрических нарушений, имеющих место в приэлектродных пространствах. Факторами, ограничивающими и регулирующими скорость электромиграции, являются электрохимические реакции у поверхности электродов. Поступление катионов в прикатодное пространство стехиометрически компенсируется, электрохимической реакцией, в результате которой некоторое количество катионов восстанавливается до молекулярного состояния и образуется эквивалентное количество анионов, которые в свою очередь компенсируют убыль анионов из прикатодного пространства. В прианодном пространстве в то же время и в том же количестве осуществляется электрохимическая реакция окисления анионов и образование эквивалентного количества катионов.

Если в капилляр введена проба, то она потоком жидкости переносится к детектору. Те ионы, которые отличаются от ионов ведущего электролита, мигрируют под действием электрического поля во взаимно противоположных направлениях, причем скорости миграции будут специфичны для каждого сорта ионов.

Прочитать публикацию целиком
Русский
РУС
Английский
ENG
German
DE
Китайский
CHI
Задать вопрос
Сервис

Заказ прибора

Закажите прибор прямо с нашего сайта.
Все приборы

Меню

ОБНОВЛЕНИЕ МЕТОДИК
Определение алюминия в очищенной воде по ФС.2.2.0020.15

Подписаться на рассылку

Если вы хотите регулярно получать информацию о проводимых нами семинарах и конференциях, новостях компании и обновлениях на сайте, оформите, пожалуйста, подписку.
Подписаться
1x1
© ООО «Люмэкс-маркетинг» 2001 –

Дизайн сайта
Компания «Ай-Ти Дизайн»

Задать вопрос